
Experiences from Robotic Autonomy Software

From research to planetary flight robots

Dr. Issa A.D. Nesnas
Supervisor, Robotic Mobility
Principal Technologist
Jet Propulsion Laboratory,
California Institute of Technology

Lectures at LASER 13th LASER Summer School on Software Engineering
Software for Robotics
September 9–17, 2017

© 2017 California Institute of Technology. Government Sponsorship Acknowledged.
Clearance: CL#14-2459

Lecture 1

Overview

• NASA’s Jet Propulsion Laboratory (JPL)

• My background

• Objective of the Lectures

• Lecture 1 – Overview

– Lectures overview

– Autonomy

– Robot heterogeneity

– Flight software environment

– Robotic research software

– Rules for safety critical software

Sept 2017 3

INTRODUCTION TO NASA/JPL

6/16/2020 Robotic Exploration 4

JPL Overview

• Pasadena, California

6/16/2020 Robotic Exploration 5

• One of 10 NASA centers

• Founded in the 1930s

JPL Responsible for Many Space Firsts

Currently operating 22

spacecraft, 2 rovers and

10 instruments in space

1st U.S. satellite

1958 – Explorer 1

1s t U.S. Spacecraft to

the moon

1964 – Ranger 7

1st Close-up images of

another planet

1964 – Mariner 4 / Mars

1st orbiter at another

planet

1971 – Mariner 9 / Mars

1st Fly-bys of Neptune

and Uranus

1986, 1989 – Voyager 2

1st orbiter at Jupiter

1979 – Galileo

1st planetary mission

1962 - Mariner 2 /Venus
1st gravity assist mission

1974 – Mariner 10/ Venus

1st orbiter at Saturn

2004 – Cassini
1st rover on Mars

1997 – Pathfinder
6/16/2020 Robotic Exploration 6

6/16/2020 Robotic Exploration 7

Voyager
(40 years and still going)

Distance

from

km
(billions)

AU

Earth 17.192 114.9

Sun 17.258 115.4

Distance

from

km
(billions)

AU

Earth 20.901 139.71

Sun 20.898 139.70

Voyager 1 Voyager 2

Cassini Grand Finale

6/16/2020 Robotic Exploration 8

NASA/JPL - Caltech

Mars Rovers

Mars Exploration Rover
1.6 meters 174 kg

Sojourner Rover
65 cm 11.5 kg

Mars Science Laboratory
3.0 meters 900 kg

6/16/2020 11

Education
• Extensions in Computer

Science
• Ph.D. and M.S. in Mechanical

Engineering Robotics
• B.E. in Electrical Engineering

My Background and Experience

Experience
• 20 years in Space Robotics

Research and flight – NASA/JPL
• Leads robotic mobility (4 years)
• Led robotics software (8 years)

• 2.5 years in Industrial Robotics

Robotic Exploration

6/16/2020

A Robotics Autonomous Software

Technology

Tasks

CLARAty

Jet Propulsion Lab

CMU

NASA ARC

U. Minnesota

R&TD, MDS,

DRDF

Competed

Mars Technology

Program

Other NASA Programs

Rover Simulation

ROAMS

Rover Hardware

JPL Internal Programs

Flight Focused

Technology Programs

Science Instruments

Simulation

Operator Interface

Maestro

Legacy Algorithms

Flight Algorithms

NASA Centers

and

Universities

Technology Tasks

NASA Centers

and

Universities

Technology Tasks

NASA Centers

and

Universities

Technology Tasks

NASA Centers

and

Universities

Technology Tasks

Technology

Validation Tasks

Technology

Validation Tasks

Technology

Tasks

Technology

Tasks

Robotic Exploration 12

6/16/2020

Autonomous Navigation in Rough Terrain

• Rover control

• Rover navigation

• Path planning with continuous replanning

• Terrain Traversability analysis

• Multi-stereo data fusion

• Visual odometry

• Stereovision

• Inertial sensing and estimation

• Manipulation (mast)

• Locomotion

• Mechanism model

• Rover/mast kinematics

• Trajectory generation

• Servo (PID control)

• I/O control

Robotic Exploration 13

DuAxel rover concept with rappelling capability
6/16/2020 14

2 minute movie

6/16/2020

Axel mobility, docking and sampling

Robotic Exploration 15

Microgravity Mobility

6/16/2020 Robotic Exploration 16

COURSE OBJECTIVES

6/16/2020 Robotic Exploration 17

6/16/2020

Course Objectives

Become familiar with some of the:

• Space environment

• Challenges of reusable robotic software

• Approaches to architecting robotic software

• Architectural themes from practical developments

• Aspects of system state, uncertainty and models

• Aspects of software interoperability

• Influence of autonomy on robotic software

• Influence of system health management

Work in some detail through examples on:

• Rover Mobility

• Rover Navigation

Robotic Exploration 18

6/16/2020

Course Overview

• Lecture 1: Introduction

– Background on space robotics

– Challenges due to robotic heterogeneity

– Impact of autonomy

– Understanding the space environment

– Flight and research robotics software

– State of the practice

– Migration of software to flight

– Summary

Robotic Exploration 19

6/16/2020

Course Overview

• Lecture 2: Architectural review

– Review of Robotic Software Architectures with closer look at:

• NASREM -> 4D-RCS, ControlShell, Mission Data Systems, LAAS,

CLARAty and ROS

– Architectural and design elements

• Layered

• Blackboard

• Component-connector

• Object-oriented design

• Design patterns

• Data flow patterns (synchronous and asynchronous)

• Event-based programming, and finite state machines

Robotic Exploration 20

6/16/2020

Course Overview

• Lecture 3: Architectural themes

– Common architectural themes

– Reflections: advocacy and criticism

– Lessons learned

• Lecture 4: Commanding, state and health

– Common architectural themes (continued)

– Robot commanding (sequences vs. task networks)

– System health management

– System state

Robotic Exploration 21

6/16/2020

Course Overview

• Lecture 5: Navigation example

– Perception (orbital and rover)

– Traversability and hazard assessment (geometric and non-

geometric hazards)

• Lecture 6: Navigation example (continued)

– Traversability and hazard assessment (continued)

– Motion planning

– Navigation architecture and interoperability

– What lies ahead

– Summary

– Concluding thoughts

Robotic Exploration 22

SPACE ROBOTICS

BACKGROUND

6/16/2020 Robotic Exploration 23

Examples of Space Robotic Systems

Flight Robots Research Robots

6/16/2020 Robotic Exploration 24

6/16/2020

Variations Even With a Family

(a)

Skid Steerable

(no steering wheels)

Front
x

yz

(b)

Partially steerable

Front

x

yz

(c)

Partially steerable

Front

x

yz

(d)

Fully-steerable

x

Front

yz

(e)

Passive Suspension (complies to

terrain)

(f)

Active Suspension (actuated

links)

Robotic Exploration 25

6/16/2020

Centralized vs. Distributed Architectures

Actuator / Encoders /

Potentiometers

Backplane (VME, PCI)

Processor board

Image acquisition boards

Digital I/O board

Analog I/O board

Wireless ethernet

Video Switcher

Gyroscopes

Accelero

-

meters

Potentio-

meters

Synchronized

stereo camera
Monocular

camera

Synchronized

stereo camera
Monocular

camera

Analog signals

Analog signals

Backplane or SBC

Processor board or

Single board computer (SBC)

Serial bus / FireWire boards

FireWire Serial Bus /

Digital signals

Digital & Analog signals

Serial Bus /

Digital signalsMicroprocessors

Digital I/O

Analog I/O

Serial comm

Actuator / Encoders /

Potentiometers

Inertial

Measurement

Unit

Science

Instrument

AthenaFIDO

Robotic Exploration 26

Right Navcams
(2)

Right Mastcam
(100mm)

Left Navcams
(2)

ChemCam RMI

Left Mastcam (34
mm)

MAHLI

MARDI

Right and Left
Front Hazcams (2

pair)

Right and Left
Rear Hazcams (2

pair)

Artist’s Concept. NASA/JPL-Caltech

Complexities and Constraints

6/16/2020 Robotic Exploration 27

AUTONOMY

6/16/2020 Robotic Exploration 28

Coordination

Health Management

Autonomy for Future Exploration

Mobility

Manipulation

Cognition

Sensing & Perception

Probabilistic Reasoning

Learning

V&V

Design for Autonomy
- Advanced avionics
- Smart sensing
- Function-level Autonomy
- System-level Autonomy
- Systems engineering/operations

Enables greater access, versatile
operations, and richer exploration

6/16/2020 Robotic Exploration 29

Autonomy Strategic Plan

The Need for Autonomy

30

Autonomy enables pioneering missions

Need
Autonomy

Limited
pre-scripted

actions

Rich
thoughtful

actions
despite
limited

resources

Robotic Exploration6/16/2020

FLIGHT SOFTWARE

6/16/2020 Robotic Exploration 31

Challenges for Flight Robotic Software

• Space environment

– Remote – communication windows and time delays

– Radiation

• Single-event upsets

• Total dose

– Unknown environment – in particular surface and sub-surface

– Limited sources for energy

– Limited mass (limits power)

• Computation

– Limited processing and memory due to radiation hardened parts

• Robustness

– Need to always know the state of the spacecraft

6/16/2020 Robotic Exploration 32

Item MER MSL

Radiation-hardened CPU RAD6000 (PowerPC) RAD750 (PowerPC)

Clock Speed 20 MHz 133 MHz

On-board RAM 128 Mbytes 128 Mbytes

Real Time Operating System VxWorks 5.3.1 VxWorks 6.7

Addressable Code RAM 32 MB 32 MB

FSW + RTOS Code Size 10 MB 21 MB

Additional RAM n/a 512 Mbytes SDRAM
(half for RAMFS)

Per-Task Memory access Shared Memory Shared Memory

C/Embedded C++ compiler Green Hills MULTI 3.5 GCC 4.1.2

Example of Computing Environment

Credit: M. Maimone

6/16/2020 Robotic Exploration 33

VxWorks Task Model

• Real-time OS – meets timing guarantees

• Pre-space-time partitioning (requires hardware support)

– Memory

• Flat without paging

– Tasks

• Are a hybrid between a process and a thread

• Calls to kernel have low-latency and low-system overhead (context

switching)

• Share memory space

• Accessible from console (during development)

– Task coordination

• Semaphores

• Message queues

6/16/2020 Robotic Exploration 34

VxWorks Architecture

Credit: Wind River

6/16/2020 Robotic Exploration 35

Modern VxWorks Architecture

6/16/2020 Robotic Exploration 36

Flight Software

• Key considerations

– Long-lived missions spanning decades (e.g. Voyager 40 years)

– Software that is analyzable (e.g. static analysis, code coverage)

– Software and functionality that can be verified and validated

• State of the practice

– Operating System: real-time OS

• Older mission flew custom OS

• VxWorks now flies on most missions

• Other OS – e.g. Ada: language and OS flying on Cassini

– Programming Language:

• C for rover missions with C++ exception for surface navigation

• C/C++ for other missions

6/16/2020 Robotic Exploration 37

ROBOTIC RESEARCH SOFTWARE

6/16/2020 Robotic Exploration 38

Robotics Research Software

• Platforms: heterogeneous fleet

• Operating System: primarily real-time until

recently

– VxWorks for > 20 years on research rovers

– QNX on some projects

– Linux with real-time extensions currently

• Languages:

– Largely C++, C, Python but also worked with Sun

on real-time Java

– Deployed object-oriented software under VxWorks

on heterogeneous platofmrs

• Tools:

– RTI’s Control Shell/NDDS for 7 years

– VxWorks tools

– Linux tools
6/16/2020 Robotic Exploration 39

Robotics Research Software

Key drivers

• Flexibility: to support new tech

capabilities

• Affordability: for research budgets

• Efficiency: to maximize test coverage

• Extendibility: to reduce need for re-

architecting

• Commonality: to share functionality

across platforms

• Maintainability

6/16/2020 Robotic Exploration 40

Migration to Flight

• Risk

• Flight heritage

• Product challenges

– Cost

– Maturity

– Limited driver support

– Custom Board Support Packages (BSP)

• Platform specific vs. generalized reusable solutions

• Impact of closed eco-systems

• Established knowledge base (staff background)

• Security

6/16/2020 Robotic Exploration 41

What does that mean for software?

• Programming: need safety critical software

– Evaluate and understand all nuances of a language. More

complex languages are more challenging to static analyze

– Predict behavior of software over extended periods of time

• Eliminate memory fragmentation by enforcing dynamic memory

allocation at initialization only

• Use patterns for software (e.g. tasking and message passing) to

prevent deadlocks

• Ensure all software compiles with no warnings

• The Mars Exploration Rovers were the first to fly C++

• Other projects have since used embedded C++

6/16/2020 Robotic Exploration 42

Ten Rules for Safety Critical Software

1. Avoid complex flow constructs, such as goto and recursion.

2. All loops must have fixed bounds. This prevents runaway code.

3. Avoid heap memory allocation.

4. Restrict functions to a single printed page.

5. Use a minimum of two runtime assertions per function.

6. Restrict the scope of data to the smallest possible.

7. Check the return value of all non-void functions, or cast to void to

indicate the return value is useless.

8. Use the preprocessor sparingly.

9. Limit pointer use to a single dereference, and do not use function

pointers.

10. Compile with all possible warnings active; all warnings should

then be addressed before release of the software.

Courtesy of Gerard Holzmann
https://en.wikipedia.org/wiki/The_Power_of_10:_Rules_for_Developing_Safety-Critical_Code

6/16/2020 Robotic Exploration 43

https://en.wikipedia.org/wiki/Goto
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Memory_management#DYNAMIC
https://en.wikipedia.org/wiki/Assertion_(software_development)#Assertions_for_run-time_checking
https://en.wikipedia.org/wiki/Preprocessor
https://en.wikipedia.org/wiki/Dereference_operator
https://en.wikipedia.org/wiki/Function_pointer

KSA - 44

IPC Message Passing and Queues in MER FSW

Client Task Server Task

Forward

Message

Return

Message

Basic Message/Reply Design

6/16/2020 Robotic Exploration

6/16/2020

Summary

• Overview of JPL and a small snapshot of on-going robotics

activities

• Covered an overview of the course (six lectures)

• Examined the heterogeneity from real-world examples

• Described need and impact of autonomy on robotic software

• Examined environment and constraints of flight and research

software

• Examined the rules of safety-critical software

• Looked at migration of software to flight

Robotic Exploration 45

LECTURE 2
ARCHITECTURE AND DESIGN

6/16/2020 Robotic Exploration 46

6/16/2020

Presentation Overview

• Featured Video: deployment example

– Autonomous navigation on heterogeneous rovers

• A review of robotic architectures

• Architectural styles

• Summary

Applicability of this structured

decomposition is applicable

outside software domain

Robotic Exploration 47

6/16/2020

Question

How do you architect

a robotic system?

Robotic Exploration 49

6/16/2020

Key Considerations

• Articulate the driving requirements

• Is it a one-off or a family of platforms? How different are they?

• How is the system envisioned to evolve over time?

• Does the benefit of generality outweigh the cost?

• Understand implications of driving requirements

• Understand your system’s abstractions at all levels

• Understand usage

• Consider verification and validation at requirements

• Don’t aim for 100% from the 1st cycle

• Define right balance in upfront architecting through design,

prototyping, implementation and deployment

• Evolve and mature over time

Robotic Exploration 50

6/16/2020

Challenges

• Different physical characteristics

• Different hardware architectures

• Platform availability

• Contributions from other institutions

• Flexibility for innovation

• Handling restrictions (IP and ITAR)

• Supporting legacy software

• Scalability to complete systems

Robotic Exploration 51

What is Robotic Autonomy?

Autonomy: To make decisions and take actions, in the

presence of uncertainty, to execute the mission and

respond to internal and external changes without human

intervention.

Perceive Decide Act

Robotic Exploration 52

6/16/2020

6/16/2020

End-to-End Robotic Systems

Operator Interface

SimulationRover

Science Simulation

Simulated Operations

Autonomous

Navigation

Real Operations

JPL Mars

Yard

On-board

Software

53Robotic Exploration

A BRIEF REVIEW OF

ROBOTIC ARCHITECTURES

6/16/2020 Robotic Exploration 54

ARCHITECTURES AND FRAMEWORKS

6/16/2020

Robotic Architecture Review

• Started in the 1980s – 1990s

– In U.S.: NASREM (NASA Reference Architecture) NIST (J. Albus)

• Morphed into the 4D-RCS

– In U.S.: RTI’s ControlShell RTI’s Constellation

• Focused on the framework rather than interfaces

– In U.S.: RTI’s NDDS Object Management Group DDS standard

• Data Distribution Service for Real-Time Systems is machine-to-machine

middleware for scalable, real-time, dependable, high-performance and

interoperable data exchanges between publishers and subscribers.

• Deployed into: robotics, financial trading, air traffic control, smart grid applications

– In U.S.: JPL’s Mission Data Systems for JPL flight projects

• State-based architecture for safety critical remotely operated system

– In U.S.: JAUS (Department of Defense) Joint Architecture for Unmanned

Systems (1998)

• Scope: all unmanned military vehicles

• Component-based high-level message set / passing architecture

Robotic Exploration 55

NASREM

6/16/2020 Robotic Exploration 56

Albus, James S., H. McCain, and Ronald Lumia. "NASA/NBS standard reference model for telerobot

control system architecture (NASREM)." Technical Note (NIST TN)-1235 (1989).

• Abstraction levels: sense, think, act

• Spatial, temporal hierarchy

• Multi-level access

• Shared memory

• Controller module as building block
• Finite state machine with data buffers that communicate

through global memory

• Non-blocking I/O

• Cyclical sampling rather than interrupts

• Synchronous control at low levels and

asynchronous control at higher levels

4D-RCS

6/16/2020 Robotic Exploration 57

Albus et al. (2002). 4D-RCS A Reference Model Architecture For Unmanned Vehicle Systems

Version 2.0. National Institute of Standards and Technology, Gaithersburg, Maryland 20899Aug 2002

Some themes persist:

• Abstraction levels

• Spatial, temporal hierarchy

• Multi-level access

• Controller module as building block

New themes: each node is:

• Goal-driven, model-based, and closed-loop

• Can decompose goals into actions (i.e. planning and

execution local to each node)

• Local world models

Criticisms, according to Balakirsky (2003): because planning is

performed on world model rather than on actual world, the validity of

plans is questioned given planning delays [1]

[1] https://en.wikipedia.org/wiki/4D-RCS_Reference_Model_Architecture

ControlShell Data Flow

Credit: Hari Nayar, The RAMS (Robot-Assisted Micro-Surgery) Arms

6/16/2020 Robotic Exploration 58

ControlShell FSM

Credit: Hari Nayar, The RAMS (Robot-Assisted Micro-Surgery) Arms

https://www-robotics.jpl.nasa.gov/systems/system.cfm?System=9

• 1992–1997

– Data Flow Elements (DFE)

• Inputs and outputs: integers and float matrices

• Data flows by copy

• Run-time configurable

– Finite State Machines (FSMs)

• State transitions

– Component scheduler

– Network Data Distribution System (NDDS)

• 1997-1999

– Hierarchical Components (Cog)

• Contains DFEs and FSMs

• Uses connectors (primitives and user defined interfaces)

– NDDS

6/16/2020 Robotic Exploration 59

6/16/2020

Robotic Architecture Review

• 2000s – 2010s

– In France, the LAAS-CNRS system architecture (1990s and 2000s)

• Layered decomposition of Functional Level / Decision Level

– In U.S.: Player/Stage (2000)

• Developed at USC; client server architecture; supports multiple COTS rovers;

most recognized; indoor robots

– In U.S.: CLARAty (JPL, CMU, NASA ARC, U. Minnesota) (2000-2007)

• Developed generic interface to enable interoperable software

• Support integration and deployment of competed technology for the Mars

Technology Program

– In Europe, OROCOS (2001)

• Funded by in part by the EU and led by K.U. Leuven

• Provides CORBA-based real-time tool kit, bayesian filtering library and

kinematics and dynamics

– In U.S.: Intel’s RETF (Robotics Engineering Task Force) (2002)

• Modeled after IETF (Internet Engineering Task Force)

• Defining standardized robotics interfaces

Robotic Exploration 60

LAAS

6/16/2020 Robotic Exploration 61

Some themes:

• Separation of Functional and Decision Level

• Finite state machines in Functional Level

• Hardware Abstraction Layer

Credit: Felix Ingrid, LAAS

6/16/2020

CLARAty Architectural Concept

Rover

ATRV Jr.

ROAMS

Functional

Layer

Decision

Layer

Rocky 8

Acquire ImageGoto Target 1

Explore Site

Deploy

Instrument

Acquire &

AnalyzeGoto Target 3

Navigator

Morphin Pt Cloud

Target Tracker

Falcon

Motor

R8_Motor
IMU

ISIS

Camera

1394 Cam

Locomotor

R8_Model

Pose Estimator

SAPP

Stereovision

JPLV

Rocky 7

Swappable Algorithm or

Robot Adaptation

Declarative Activity

Functional Abstraction

Some themes:

• Separation of Functional and Decision Layer

• Interoperable algorithms in Function Layer

• Finite state machines in Functional Level

• Device and behavior abstractions

Robotic Exploration 62

Decision Layer

• Planners

– Activity, Plan

Functional Layer

• Executives

• Behaviors
– Locomotor, Pose_Estimator, Manipulator, Navigator, etc.

• Models
– Motor_Model, Camera_Model, Mechanism_Model, etc.

• Devices
– Motor, Camera, IMU, 3D sensor, etc.

• Data structures
– Array, Matrix, Image, Map, Message, Resource, etc.

CLARAty Abstractions/Components

6/16/2020

G
e

n
e
ri
c
 a

n
d
 s

p
e
c
ia

liz
e
d

I.A. Nesnas, et.al., "CLARAty: Challenges and Steps Toward Reusable Robotic Software," International

Journal of Advanced Robotic Systems, Vol. 3, No. 1, pp. 023-030, 2006.

Robotic Exploration 63

https://claraty.jpl.nasa.gov/man/overview/publications/05_nesnas_challenges_jars.pdf

6/16/2020

Robotic Architectural Review

• 2000s – 2010s (continued)

– In U.S.: NASA’s JTARS (multiple centers and universities) (2005)

– In U.S.: Microsoft Robotics Studio (2007)

• Service-oriented architecture; XML based message passing; supports

heterogeneous programming languages

– In Germany: RoSTA (2007)

• Funded by the EU and led by Fraunhofer Institute

– In U.S.: Willow Garage’s ROS (2008)

– In Europe: BRiCS (Best Practice in Robotics) (2009)

– In Japan: AIST’s Open-R for humanoid robots

– In U.S.: CARMEN at Carnegie Mellon for Robot Navigation

– In Canada: MARIE Sherbrooke University

– In France: URBIE (robotic programming language)

– In U.S.: Aware from IRobot

Robotic Exploration 64

6/16/2020

Robotic Architectural Review

• 2010s – Present

– In U.S.: Open Source Robotics Foundation ROS (2013 –)

• Probably the largest repository of robotics software

• Publish subscribe model for interoperability

• Focus on indoor robotics

– In U.S.: NASA/JPL Software and Robotics Frameworks (on-

going)

And many others:

• Miro (for the Robocup competition; Corba-based real-time framework),
ESRP from Evolution, ROCI from U. Penn, OSCAR from U. Texas, ARIA

from MobileRobots

Robotic Exploration 65

ROS

6/16/2020 Robotic Exploration 66

Check and replace if picture is copyright restricted

http://robohub.org/wp-content/uploads/2014/01/ros101-3.png

What is ROS exactly?

• Plumbing: publish-subscribe

messaging for distributed computing

• Tools: for configuring, introspecting,

debugging, visualizing, logging,

testing, and managing distributed

computing.

• Capabilities: functional libraries

(mobility, manipulation, and

perception)

• Ecosystem: a community with a

focus on integration and

documentation.

Adapted from B. Gerkey post on:

https://answers.ros.org/question/12230/what-is-ros-

exactly-middleware-framework-operating-system/

Coupled

plumbing + functionality

Separated

plumbing from functionality
(e.g. OMPL and PCL)

ARCHITECTURAL STYLES

APPROACH AND CHALLENGES

6/16/2020 Robotic Exploration 67

Architectures and Frameworks

• Reusable Framework

– Domain agnostic

• Reusable/Interoperable Components

– Domain specific

6/16/2020 Robotic Exploration 68

Architectures and Frameworks

Software

• Object-oriented

• Component-based

• Event-based

• Publish-subscribe

• Service-oriented

6/16/2020

Robotics

• Layered (2, 3)

– Deliberative

– Reactive

(subsumption)

• State-based

Robotic Exploration 69

6/16/2020

Technical Approach (for Domain-Specific)

1. Capture requirements from domain experts

2. Use global perspective across domains (motion, perception,

estimation, navigation, autonomy)

3. Identify recurring patterns and common infrastructure therein

4. Use domain expert to guide design

5. Define appropriate interfaces for each subsystem

6. Develop generic framework to support various implementations

7. Adapt legacy implementations to validate framework

8. Encapsulate when re-factoring is not feasible or affordable

9. Develop regression tests

10. Test on multiple robotic platforms and study limitations

11. Feed learned experience back into the design

12. Review and update to address limitations

After several iterations one hopes to have achieved a truly reusable infrastructure

Robotic Exploration 70

6/16/2020

Algorithm Infusion Challenges

The new algorithms to be integrated may:

• Have architectural mismatches with the framework

• Include multiple orthogonal functionalities

• Make implicit assumptions about the platform

• Duplicate functionality in the framework

• Use incompatible data structures

• Be complex and hard to tune

• Depend on specific platform

• Require highly specialized domain expertise

• Be poorly implemented

Robotic Exploration 71

LECTURE 3
ARCHITECTURAL THEMES

6/16/2020 Robotic Exploration 72

6/16/2020

Presentation Overview

• Featured Video: deployment example

– Autonomous navigation on heterogeneous rovers

• Common architectural themes (part 1)

• Reflections on architectural themes: advocacy and

criticism (part 1)

• Architectural styles

• Summary
Applicability of this structured

decomposition is applicable

outside software domain

Robotic Exploration 73

Example: Autonomous Approach and

Measure

6/16/2020 Robotic Exploration 74

ARCHITECTURAL THEMES

ARCHITECTURES AND FRAMEWORKS

6/16/2020 Robotic Exploration 75

6/16/2020

Acknowledgement: CLARAty Developers (Core Team)

• NASA Ames Research Center

– Lorenzo Flueckiger

– Clay Kunz

– Randy Sargent

– Hans Utz

– Anne Wright

• Carnegie Mellon

– David Apfelbaum

– Reid Simmons

– Nick Melchior

– Chris Urmson

• University of Minnesota

– Stergios Roumeliotis

– Anastasios Mourikis

– Nikolas Trawny

• Jet Propulsion Laboratory

– Khaled Ali

– Ian Baldwin

– Kelly Breed

– Max Bajracharya

– Antonio Diaz Calderon

– Daniel Clouse

– Jeffrey Edlund

– Tara Estlin

– Enrico Ferrentino

– Dan Gaines

– Won Kim

– Richard Madison

– Michael McHenry

– Jack Morrison

– Hari Das Nayar

– Issa A.D. Nesnas

For the complete list of key former developers and contributors see:

http://claraty.jpl.nasa.gov -> Project -> Team

– Kyohei Otsu

– Michael Paton

– Mihail Pivtoraiko

– Richard Petras

– Venkat Rajagopalan

– Luca Randazzo

– Rob Reid

– Jacek Sawonwienicz

– I-Hsiang Shu

– Robert Steele

– Richard Volpe

Robotic Exploration 76

http://claraty.jpl.nasa.gov/

6/16/2020

Architectural Themes

1. Abstraction hierarchy

2. Multiple programming paradigms

3. Multi-level access

4. Common data structures

5. Interoperable transformations

6. Unified mechanism model

7. Separation of concerns

– Estimation from control

– Models from control

– Logical from physical hierarchies

– Interface from implementation

8. Run-time encapsulation

Some recurring and

some from CLARAty

I.A. Nesnas, "CLARAty: A

Collaborative Software for

Advancing Robotic

Technologies," NASA Science

and Technology Conference,

University of Maryland University

College, Adelphi, MD, June 2007

https://claraty.jpl.nasa.gov/man/overview/publications/07_nesnas_claraty_nstc.pdf

6/16/2020

Theme 1: Use Abstraction Hierarchy

Sense

Robot

Act

Environment

Physical

World

Control

Software

Think
Motor_MoverMotor_Sensor

Hw_Motor_Sensor

Motor_Controller

Hw_Motor_Mover

Motor Hardware

Motor

Hw_Motor

Motor Hardware

Robotic Exploration 78

6/16/2020

Theme V: Separating Logical from Physical Hierarchies

Motor_Impl

(a) Joint is a Motor

Robot2_MotorJoint LM629_Motor

1

Motor

Revision 2

Robot2_Motor

Joint

LM629_Motor

1

(b) Joint has a Motor

Motor

Revision 3

Robot1_Motor

LM629_Chip

Motor_Control_BoardLM629_Motor

Logical Motor

Architecture

Physical Motor

Architecture

Robot2_Motor

Device

Motor

Robotic Exploration 79

Example: Motor Generic API

6/16/2020 Robotic Exploration 80

// C++ Sample Code

Motor a_motor;

a_motor.move(pos);

What is the problem with this code?

What is missing?

Example: Motor

6/16/2020 Robotic Exploration 81

M. Pivtoraiko, I.A. Nesnas, H.D. Nayar, "A Reusable Software Framework for Rover Motion Control", International

Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, CA, February 2008

https://claraty.jpl.nasa.gov/man/overview/publications/08_pivtoraiko_nesnas_nayar_isairas.pdf

Example: Motor

6/16/2020 Robotic Exploration 82

// C++ Sample Code

Motor a_motor;

a_motor.move(delta_pos, max_vel, accel, decel);

So what is the problem with this code now?

What is missing?

Example: Motor

6/16/2020 Robotic Exploration 83

 3.3.2. Generating Trajectories. Now that we have

developed the methods for representing both types of

motor trajectories, we will discuss how they can be

generated. Trajectory generation refers to finding the

complete specification of the trajectory, given its

boundary conditions. In the case of the example of the

trapezoidal trajectory in Section 3.3.1, trajectory

generation would involve finding the times t1 and t2 of

the transitions from ramp-up to plateau and from

plateau to ramp-down, respectively. In case of the

complex trajectory, the generation would involve

computing all values that represent it. For example, in

case of a piecewise polynomial function, this would

include the coefficients of all the polynomials

involved. In the general case of the sampled function,

this would involve computing all of its samples.

The generation of most practical simple

(trapezoidal) trajectories is straight-forward and can be

done in closed-form. However, since the complex

trajectories can be arbitrary, their generation can be

arbitrarily difficult. For example, some trajectory

generation algorithms could involve iterative gradient

descent methods or parametric optimal control. In

order to preserve the uniformity of the motion

representation part of the motor interface in light of

these differences, we decided to separate trajectory

generation from the representation of trajectories

themselves. Thus, trajectory generators are separate

software elements in CLARAty, widely ranging in

complexity. However, the communication between

them and the motor interface occurs via the easy-to-use

trajectory representations, described in Section 3.1.1.

This approach allows the trajectories to be light-weight

both in terms of storage and meaning. In turn, this

facilitates learning and maintenance of the motor

interface.

3.3.3. Executing Trajectories. As was mentioned in

Section 2 and illustrated in Figure 2, there is a large

variation in motor hardware in robotics. This variation

is especially relevant for executing trajectories. In

order to enable the motor interface to be general and

re-usable for a variety of motor hardware, we must

build generality into the method of executing

trajectories. This is the essence of the Requirement 3,

and our method achieves this requirement by placing

the specifics of trajectory execution into the hardware-

specific code, namely the adaptation and hardware

classes in Figure 3. Thus, the application code is able to

manage abstract representations of trajectories only

and pass them directly to the hardware-specific code

for execution.

Algorithm 1 is a code example that demonstrates

the simplicity of setting up a motor and commanding

its motion. The lines 1 and 2 setup the hardware motor

class and its logical adaptation, respectively. Line 3

sets the motor in setpoint control mode, the default

control variable is angular position. Line 4 specifies

the motion by 1 radian, and line 5 enacts the motion.

Separating setting up the motion and enacting it (lines

4 and 5) enables better error handling: the function

start() executes only if there were no errors with

commanding the motion. Line 6 blocks until motor

finished executing the previous trajectory. The motor

is set to the trajectory mode in line 7, and the following

line provides the residual value of the constructor of

Trapezoidal_Trajectory (containing the representation

of a simple trajectory type) as the trajectory to follow.

The single argument means the goal of angular

distance 1.0, and the remaining parameters are set at

defaults, obtained from the motor model. Finally, line

9 executes the trajectory. This example illustrates how

our motor interface satisfies the Requirement 1. The

simplicity of performing this typical motor operation

was enabled by the motor class hierarchy of choice and

crystallizing the particulars of motor control in a few

intuitive parameters.

One of the typical differences in motor hardware is

the method of enacting motor motion. Some motor

controllers implement certain common trajectory types

in hardware. Other motors, including the motors in the

Figure 6. Class hierarchy of the Math

Functions software framework, used for
representing complex trajectories.

1. X_Hw_Motor hw_motor(parameters)
2. X_Motor motor(hw_motor)
3. motor.set_control_mode(SETPOINT_CONTROL)
4. motor.set_setpoint(1.0)
5. motor.start()
6. motor.wait_until_done()
7. motor.set_control_mode(TRAJECTORY_CONTROL)
8. motor.set_trajectory(Trapezoidal_Trajectory(1.0))
9. motor.start()

Algorithm 1. Using the motor interface to

setup a motor and command motions.

M. Pivtoraiko, I.A. Nesnas, H.D. Nayar, "A Reusable Software Framework for Rover Motion Control", International

Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, CA, February 2008

https://claraty.jpl.nasa.gov/man/overview/publications/08_pivtoraiko_nesnas_nayar_isairas.pdf

Example: Motor

6/16/2020 Robotic Exploration 84

// C++ Sample Code

Motor a_motor;

a_motor.use_trajectory_mode();

a_motor.move(Trapezoial_Traj_Params(delta_position,

max_velocity,

accel,

decel));

Important to consider implicit assumptions

of your API

6/16/2020

State
State

Objects

Members

Behavior

Estimator

State Machines

Object

Services Creates

Private

Public

Links to

State Handler

Sub-object

Internal

Implementation

Local Estimation

State 1

Queries

Device

- optional link

Theme 1: Use Abstraction Hierarchies

Robotic Exploration 85

6/16/2020
Robotic Exploration 86

Example: Rocky 8 Rover

MastLeggedLoc Wheeled Locomotor

Locomotor

CoordMotionSystem

Motor

BBMotorControlledMotor

Analog_IODigital_IO

IO

Manipulator

Arm

R8_Arm R8_Mast

Implements general fwd &

inv. kinematics & joint ctrl

•Specialized inv. Kinematics (overrides default)

•Attaches proper motors

•Attaches proper cameras for mast

•Adds filter wheel

R8_Locomotor

•Attaches proper motors

•Restricts Steering to 2 wheels

R8_Motor

R8_Rover

R8_Arm

R8_MastR8_Locomotor

R8

Widget Board

Widget AIOWidget DIO

Widget Motor
HCTL 1100 Chip

Non reusable Code Reusable Code

Trajectory

Trajectory_Generator

Timers

6/16/2020
Robotic Exploration 87

Example: Rocky 7 Rover

MastWheeledLocLeggedLoc RBLoc

Locomotor

CoordMotionSystem

Motor

BBMotorControlledMotor

Analog_IODigital_IO

IO

Manipulator

Arm

R7_Arm R7_Mast

Implements general fwd &

inv. kinematics & joint ctrl

•Specialized inv. Kinematics (overrides default)

•Attaches proper motors

•Attaches proper cameras for mast

•Adds filter wheel

R7_Locomotor

•Attaches proper motors

•Restricts Steering to 2 wheels

LM629Chip

LM629Motor

R7_Rover

R7_Arm

R7_MastR7_Locomotor

R7

Device Drivers

VPAR10Board

Non reusable Code Reusable Code

Theme 1: Use an Abstraction Hierarchy

6/16/2020

• Manages complexity

• Enables interoperability

• Enables multi-level access

• Imposes too much

structure

(cross-domain coupling can

occur in flight)

• Encapsulates data/state

• Creates strong coupling

(compile time)

Advocacy Criticism

Robotic Exploration 88

6/16/2020

Theme 2: Support Multiple Programming Paradigms

Rover.navigate_from_to(Loc1, Loc2)

Preconditions: near(Loc1,Loc2)

rover.has_power(Loc1,Loc2)

rover.has_time(Loc1,Loc2)

Effects: rover.is_at(Loc2)

Declarative Programming

If near(Loc1,Loc2) AND

rover.has_power(Loc1,Loc2) AND

rover.has_time(Loc1,Loc2) AND

Then:

rover.navigate_from_to(Loc1,Loc2)

Procedural Programming

Robotic Exploration 89

T. Estlin, D. Gaines, C. Chouinard, F. Fisher, R. Castano, M. Judd, R. Anderson, and , I. Nesnas, "Enabling Autonomous

Rover Science Through Dynamic Planning and Scheduling," Proceedings of the 2005 IEEE Aerospace Conference, Big

Sky, Montana, March 2005. pdf (12 pages, 0.4MB)

https://claraty.jpl.nasa.gov/man/overview/publications/05_estlin_clear_ieeeaero.pdf

Theme 2: Multiple Programming Paradigms

6/16/2020

• Allows flexible ordering of

activities

• Maximizes activities given

resource constraints

• Does not require explicit

constraints (terse)

• More predictable

• Difficulty in predicting time to

generate plan

• May not generate a plan

• Requires all constraints to be

explicit

• Emergent behavior

• Over-constrains order of

activities

Advocacy Criticism

D
e

c
la

ra
ti

v
e

P
ro

c
e

d
u

ra
l

Robotic Exploration 90

6/16/2020

Theme 3: Provide Multi-level Access

Analog and Digital I/O

Motor Group

Wheeled Locomotor

Rover

Locomotor

Multi-level mobility abstractions

Navigator

Motor

FIDO Rover

ATRV Jr.

ROAMS Simulation

Serial Bus

Software

Abstractions

Hardware / Simulation

Systems

Rocky 7 Rover

Pluto Rover

Robotic Exploration 91

6/16/2020

• Allows integration of new

technologies at any level

• Allows migration of

functionality between

software and hardware

• Requires arbitration among

multiple masters

Advocacy Criticism

Theme 3: Provide Multi-level Access

Robotic Exploration 92

6/16/2020

Theme 4: Use Common Data Structures

N2D_Array

Element_Type

Matrix

Element_Type

Image

Pixel_Type

RGB_Image

Pixel_Type

3

Grid_Map

Cell_Type

Plane_Fit_Map

Cell_Type

Goodness_Map

Cell_Type

Robotic Exploration 93

Theme 4: Use Common Data Structures

6/16/2020

• Reduces unnecessary

duplication (cost and

maintenance)

• Allows deeper dives for

debugging

• Reduces architectural

mismatches

• Creates dependencies on

common data structures

• Modifications of data

structures ripples through

system

Advocacy Criticism

Robotic Exploration 94

6/16/2020

Theme 5: Use Interoperable Transformations

Rotation_Matrix

Element_Type

Transform

Element_Type

Rotation_Type

Quaternion

Element_Type

H_Transform Q_Transform

Element_Type Element_Type

Robotic Exploration 95

Theme 5: Use Interoperable Transformations

6/16/2020

• Enables interoperability

• Reduces errors in

coordinate transformation

conversions

• Increases consistency and

understandability

• Creates dependencies on

common data structures

• Modifications of data

structure ripple through

system

Advocacy Criticism

Robotic Exploration 96

6/16/2020

Theme 6: Unify Mechanism Model

Ground_Body

Body4 Body5

Body Tree

Body0

Body2 Body3Body1

Mechanism Tree

Body

Reference

Frame

Sensor

Mount

Frame

Arm mount

Frame

Center of

mass

Camera

Mount Frame

Bodyi

B1

Jointi

Bounding

Shape

Tree

B2 B3 B3B4

B5

C1

B1

B2 B3

B4 C1 B5

Coarse

Shape

Finer

Shape

Finest

Shape

Leaves

of tree

define

finest

shape

Bounding

Shapes

Resolution

Levels

Bodies and Joints

Unifying mechanism model

Robotic Exploration 97

A. Diaz-Calderon, "Towards a Unified Representation of Mechanisms for Robotic Control Software,"

B. International Journal of Advanced Robotic Systems, Vol. 3, No. 1, pp. 061-066, 2006.

https://claraty.jpl.nasa.gov/man/overview/publications/05_diaz_mech_model_jars.pdf

6/16/2020

Theme 6: Unify Mechanism Model

Body1

Reference Frame

Body1CG

Body1
Upper arm link

Rover

Reference

Frame

Rover

CG

Camera

Frame

Body0
Rover

Joint1

Body2
Lower arm

link

Sensor

Mount

Frame

Camera

Mount

Frame

Body2CG

Articulated

Rotation

Body2

Reference

Frame

Fixed

Transform

Arm

Mount

Frame

Shoulder

Yaw

Articulated

Translation

Unifying mechanism model Make stateless

A. Diaz-Calderon, "Towards a Unified Representation of Mechanisms for Robotic Control Software,"

B. International Journal of Advanced Robotic Systems, Vol. 3, No. 1, pp. 061-066, 2006.

Robotic Exploration 98

https://claraty.jpl.nasa.gov/man/overview/publications/05_diaz_mech_model_jars.pdf

Theme 6: Unify Mechanism Model

6/16/2020

• Enables integrated motions

increasing robotic

workspace (e.g. mobile

manipulation)

• Offers consistent

representation

• Improves interoperability

• Supports planning (what if?)

• Imposes structure

• Adds overhead

Advocacy Criticisms

Robotic Exploration 99

6/16/2020

Wheel_Locomotor_Model

Locomotor

Mechanism_Model

Rocker_Bogie_Model

Wheel_Locomotor

Rocky8_Locomotor

Generic classes

Robot Adaptation

Object

Wheel_Model 2..*

1

Rocker_Model

Device

1

Motor_Group

1

Pose_Estimator

Rocky8_Locomtor_Model

Actuated Joints

Passive Joints

Passive Joints

Differential Joint

Rocker Bogie Mechanism

Actuated Joints

Passive Joints

Passive Joints

Differential Joint

Rocker Bogie Mechanism

Actuated Joints

Differential Joint

Rocker Mechanism

Actuated Joints

Differential Joint

Rocker Mechanism

Mechanism Model Architecture Control Architecture

Theme 7(a): Separate Models from Control

Robotic Exploration 100

6/16/2020

Manipulator_Model

Device

Mechanism_Model

R8_Arm_Model

Manipulator

R8_Arm

Device_Group

Motor_Group Motor

Coordinator

R8_Motor

Generic classes

Robot Adaptation

ME_Body

ME_Joint

Device

Robotic Exploration 101

Theme 7(a): Separate Models from Control

Theme 7(a): Separate Models from Control

6/16/2020

• Supports planning (what if?)

Advocacy Criticisms

Robotic Exploration 102

6/16/2020

Concluding thoughts

• Engaging domain experts is critical

• Starting with the end in mind helps steer the effort

• Developing robotics standards and reusable robotic software is

hard because of the hardware/software heterogeneity

• Common infrastructure reduces accidental complexity and saves

resources but adds constraints that could stifle innovation

• Generalized software increases complexity

• Interoperable software/hardware is challenging for autonomous

robotics systems

• Developing and evolving Themes is critical

• Handling non-technical challenges (ITAR / IP) is important and

requires significant effort

Robotic Exploration 103

6/16/2020

Summary

• Reviewed decades of robotics architectures

• Presented process and challenges

• Shared architectural themes

• Shared reflections on advocacy and criticisms

Robotic Exploration 104

H.D. Nayar, I.A. Nesnas, "Measures and Procedures: Lessons Learned from the CLARAty Development at

NASA/JPL," International Conference on Intelligent Robots and Systems (IROS), San Diego, CA, October 2007

https://claraty.jpl.nasa.gov/man/overview/publications/07_nayar_claraty_measures_iros.pdf

LECTURE 4
MORE ARCHITECTURAL ELEMENTS

6/16/2020 Robotic Exploration 105

Example: Autonomous Approach and Measure

6/16/2020 Robotic Exploration 106

6/16/2020

Navigating in a Simulated Environment

ROAMS

CLARAty Morphin

Navigator GUI

Courtesy of SOOPS task

Robotic Exploration 107

6/16/2020

Innovative Technologies Infused

• Over 50 technologies from two dozen technology

providers integrated into the framework.

• Several technologies were formally and independently

validated

• Several were infused into the MER and later MSL

mission:

– Autonomous navigation (Morphin/GESTALT) (CMU/JPL)

– Visual target tracking of designated targets (ARC/JPL)

– Long-range global navigation (Field D* - CMU)

– Autonomous science observations (JPL)

– Autonomous manipulation (JPL)

– 6DOF Extended Kalman Filter pose estimation (U. Minnesota)

6/16/2020

Architectural Themes

1. Abstraction hierarchy

2. Multiple programming paradigms

3. Multi-level access

4. Common data structures

5. Interoperable transformations

6. Unified mechanism model

7. Separation of concerns

a) Models from control

b) Logical from physical hierarchies

c) Interface from implementation

d) Estimation from control

8. Run-time encapsulation

Some recurring and

some from CLARAty

6/16/2020

Theme 7(b): Separate Logical from Physical Hierarchies

Camera

Logical Camera Hierarchy Physical Camera

DeviceDevice_Group

Camera_Group

X_Camera_Group X_Hw_CameraX_Camera

Generic Classes

Adaptation Classes

Hardware Classes

Robotic Exploration 110

D.S. Clouse, I.A. Nesnas, C. Kunz, "A Reusable Camera Interface for Rovers," IEEE International Conference on

Robotics and Automation, Workshop on Software Development and Integration in Robotics, Rome, Italy, April 2007.

https://claraty.jpl.nasa.gov/man/overview/publications/07_clouse_camera_icra.pdf

6/16/2020

Historical Evolution Leading to Separating

Logical and Physical Hierarchies

X_Hw_Camera

Camera

Revision I: (1999)

1. Simple hierarchy

2. Camera functionally not extendible

3. Hardware adaptations dependent on

CLARAy API

4. Only two camera synchronization. Done

in the adaptation

5. Uses Image abstraction

Camera

Logical Camera Hierarchy Physical Camera

DeviceDevice_Group

Camera_Group

X_Camera_Group X_Hw_Camera

Camera_Impl

Device_Impl

Camera is

extendible

Revision II: (2002)

1. Complex hierarchy

2. Camera functionally extendible

3. Hardware adaptations

dependent on CLARAy API

4. Generic camera grouping

5. Multi-camera synchronization

6. Multi-client/thread support

7. Camera power management

8. Uses Image abstraction

Generic Classes

Adaptation Classes

Hardware Classes

Camera

Logical Camera Hierarchy Physical Camera

DeviceDevice_Group

Camera_Group

X_Camera_Group X_Hw_CameraX_Camera

Revision III: (2007)

1. Moderate complexity

2. Camera functionally not

extendible

3. Separation of logical and

physical hierarchies

4. Hardware adaptations

independent of CLARAy API

5. Generic camera grouping

6. Multi-camera synchronization

7. Multi-client/thread support

8. Camera power management

9. Supports capturing image

properties by using

Camera_Image abstraction

Camera Use Cases from (SCIP):
✓ Monocular multi-resolution nav

imaging for target tracking

✓ Synchronized binocular stereo from
navcams for target ranging and fine
pointing

✓ Synchronized quad stereo imaging
from nav and hazcams for target
hand-off

✓ Synchronized binocular stereo from
hazcams for obstacle avoidance

Robotic Exploration

111I.A. Nesnas, "The CLARAty Project: Coping with Hardware and Software

Heterogeneity," book chapter to appear in the Software Engineering for Experimental

Robotics, Springer Tracts on Advanced Robotics, edited by Davide Brugali, 2006.

https://claraty.jpl.nasa.gov/man/overview/publications/06_nesnas_starbook.pdf

A Bad Solution for Task Safety

Problems

– User must reestablish parameter settings for every lock.

– Assumes user’s will write cooperative code.

– Deadlock / starvation are possible.

Image<uint8_t> img1;

X_Camera cam1(hw_cam1);

cam1.lock();

cam1.set_brightness(0.35);

cam1.acquire(img1);

cam1.unlock();

6/16/2020 Robotic Exploration 112

D.S. Clouse, I.A. Nesnas, C. Kunz, "A Reusable Camera Interface for Rovers," IEEE International Conference on

Robotics and Automation, Workshop on Software Development and Integration in Robotics, Rome, Italy, April 2007.

https://claraty.jpl.nasa.gov/man/overview/publications/07_clouse_camera_icra.pdf

Logical/Physical Cameras for Task Safety

Physical camera object represents a piece of hardware.

– Interface is specific to the camera hardware

– Parameter change happens immediately

– Acquire uses current hardware parameter settings

Logical camera object maintains a single user’s view.

– Base class defines a common interface for all logical cameras.

– Interface may be extended to support hardware-specific functions.

– Parameter values are cached

– Acquire atomically sets params in hardware and acquires image.

No special user code is required for task safety.

Image<uint8_t> img1, img2;

X_Hw_Camera hw_cam1(id_unique_to_hw);

X_Camera cam1(hw_cam1);

cam1.set_brightness(0.35);

cam1.acquire(img1);

cam1.acquire(img2);
6/16/2020 Robotic Exploration 113

Definition of Logical Camera Class

class Camera : public Device {

public:

virtual bool set_contrast(double gain_percent) = 0;

virtual double get_contrast() const = 0;

virtual bool set_brightness(double offset_percent) = 0;

virtual double get_brightness() const = 0;

virtual bool set_exposure(double seconds) = 0;

virutal double get_exposure() const = 0;

enum IMAGE_FORMAT { MONO8, YUV411, …, RGB8, MONO16, RGB16 };

virtual bool set_format(IMAGE_FORMAT format, int width,int height);

virtual IMAGE_FORMAT get_format() const = 0;

virtual int get_width() const = 0;

virutal int get_height() const = 0;

virtual void acquire(Image<uint8_t> & image,

Time* timestamp = NULL,

Feature_Map* feat_map = NULL) = 0;

virtual void acquire(Image<uint16_t> & image,

Time* timestamp = NULL,

Feature_Map* feat_map = NULL) = 0;

};

6/16/2020 Robotic Exploration 114

Camera_Group Code Example

X_Hw_Camera hw_cam1(id1), hw_cam2(id2);

X_Camera cam1(hw_cam1), cam2(hw_cam2);

X_Camera_Group grp(cam1, cam2);

cam1.set_brightness(0.35);

cam2.set_brightness(0.35);

Vector<Image<uint8_t> > images(2);

grp.acquire(images);

6/16/2020 Robotic Exploration 115

D.S. Clouse, I.A. Nesnas, C. Kunz, "A Reusable Camera Interface for Rovers," IEEE International Conference on

Robotics and Automation, Workshop on Software Development and Integration in Robotics, Rome, Italy, April 2007.

https://claraty.jpl.nasa.gov/man/overview/publications/07_clouse_camera_icra.pdf

Theme 7(b): Separate Logical from Physical Hierarchies

• Decouple hardware

architecture from

functional/logical

constraints

• Provide clear mapping

between “what the software

needs” and “what the

hardware can do”

• Increased complexity for

interfacing to hardware

6/16/2020

Advocacy Criticisms

Robotic Exploration 116

6/16/2020

Theme 7(c): Separating Interface from Implementation

for Remote Processing

Behavior

Navigator

Locomotor

Mechanism_Model

Pose_Estimator

Vector_Based_Selector

1

1

1

Action Selector

Terrain_Evaluator
1

1

1

Plane_Fit_Map

Proxy_Action_Selector

Global_Cost_Function

Local_Cost_Function

Remote Processor
Network

Main Processor

Action Selector

Grid_Based_Selector

Remote_Action_Selector

Robotic Exploration 117

6/16/2020

Theme 8: Encapsulate Non-Generic Run-time Models

MotorTrajectory

Adaptation Layer R8_MotorFido_Motor RS_Motor

Periodic Task Widget_Motor

Widget_Board

Widget_Motor

PID ControllerCounter

DIO

Analog Out Analog In

MSI P460

MSI P430 MSI P415

MSI P430

Runtime object

Non-generic

Adaptations

R7_Motor

LM629_Chip

R7_MC_Board

Robotic Exploration 118

Theme 8: Encapsulate Non-Generic Run-time Models

6/16/2020

• Manages complexity

• Enables interoperability

• Enables multi-level access

• Hides run-time elements

• Run-time element could

impact performance

6/16/2020

Advocacy Criticisms

Robotic Exploration 119

6/16/2020

Putting it All Together - Swapping Navigation Algorithms

Stereo Camera

Stereo Engine
<<active>>

Navigator

Gestalt Navigator

Grid Mapper

Mapper

JPL Stereo

Terrain Sensor

Locomotor

R8_Locomotor

Global Cost Func

D* Path Planner

Stereo Processor

Camera R Camera L

Synchronous/or

Asynchronous

e.g. Rate Set at: 10Hz

used by other activities

Asynchronous

<<active>>

Asynchronous

e.g. Rate Set at: 5 Hz

<<active>>

Asynchronous

e.g. Rate Set at: 8 Hz

EKF Pose Estimator

Pose Estimator

Path Information

Path Planner

K9 Rover

Rover

Decision Layer

Commanding and

State Updates

Robotic Exploration 120

6/16/2020

Stereo Camera

Stereo Engine
<<active>>

Navigator

R7/Soj Navigator

Mapper

JPL Stereo

Terrain Sensor

Locomotor

ROAMS_Locomotor

Tangent Graph

Stereo Processor

Camera R Camera L

Synchronous/or

Asynchronous

e.g. Rate Set at: 10Hz

used by other activities

Asynchronous

<<active>>

Asynchronous

e.g. Rate Set at: 5 Hz

<<active>>

Asynchronous

e.g. Rate Set at: 8 Hz

EKF Pose Estimator

Pose Estimator

Path Information

Path Planner

K9 Rover

Rover

Decision Layer

Commanding and

State Updates

Obstacle Mapper

Putting it All Together - Swapping Navigation Algorithms

Robotic Exploration 121

ControlShell FSM

Credit: Hari Nayar, The RAMS (Robot-Assisted Micro-Surgery) Arms

https://www-robotics.jpl.nasa.gov/systems/system.cfm?System=9

• 1992–1997

– Data Flow Elements (DFE)

• Inputs and outputs: integers and float matrices

• Data flows by copy

• Run-time configurable

– Finite State Machines (FSMs)

• State transitions

– Component scheduler

– Network Data Distribution System (NDDS)

• 1997-1999

– Hierarchical Components (Cog)

• Contains DFEs and FSMs

• Uses connectors (primitives and user defined interfaces)

– NDDS

6/16/2020 Robotic Exploration 122

ControlShell CC Architecture

• Flexibility

• Run-time re-configurability

• Structured environment

• Looser component

dependency

• Graphical representation

• Auto-generated FSM code

• Concrete interfaces

(no abstraction)

• Performance

(multiple data copies)

• Run-time type checking

• Scalability

• Difficult to manage graphical

representation

• Multiple ways to edit (graphics,

code, auto-code)

• Debugging

• Inter-operability

• Availability (cost)

6/16/2020

Advocacy Criticism

Robotic Exploration 123

6/16/2020

Lessons Learned

• Success: many many attempts, little traction …

• Timing: is critical: has the field matured enough and ready for

standardization?

– Too soon risks stifling innovation

– Too late results in accidental complexity and challenges of inter-operability

• Scope:

– Efforts with a narrow technical scope but large application potential seem

to succeed (IETF, OMG DDS)

– Efforts with broad scope and large heterogeneity face challenges (e.g.

JAUS)

• Hardware/software: efforts need to engage both hardware and

software providers and supplies

• Outlook: autonomous systems is a rapidly growing field with the

possibility for several disruptive innovations

• Process: need an evolvable process that enables fielding new

innovations and evaluating success prior to incorporation into the

standard

Robotic Exploration 124

Logical/Physical Cameras for Task Safety

Physical camera object represents a piece of hardware.

– Interface is specific to the camera hardware

– Parameter change happens immediately

– Acquire uses current hardware parameter settings

Logical camera object maintains a single user’s view.

– Base class defines a common interface for all logical cameras.

– Interface may be extended to support hardware-specific functions.

– Parameter values are cached

– Acquire atomically sets params in hardware and acquires image.

No special user code is required for task safety.

Image<uint8_t> img1, img2;

X_Hw_Camera hw_cam1(id_unique_to_hw);

X_Camera cam1(hw_cam1);

cam1.set_brightness(0.35);

cam1.acquire(img1);

cam1.acquire(img2);
6/16/2020 Robotic Exploration 125

Definition of Logical Camera Class

class Camera : public Device {

public:

virtual bool set_contrast (double gain_percent) = 0;

virtual bool set_brightness (double offset_percent) = 0;

virtual bool set_exposure (double seconds) = 0;

virtual double get_contrast () const = 0;

virtual double get_brightness () const = 0;

virtual double get_exposure () const = 0;

enum IMG_FORMAT { MONO8, YUV411, …, RGB8, MONO16, RGB16 };

virtual bool set_format(IMAGE_FORMAT format, int width, int height);

virtual IMG_FORMAT get_format() const = 0;

virtual int get_width() const = 0;

virutal int get_height() const = 0;

virtual void acquire(Image<uint8_t> & image,

Time* timestamp = NULL,

Feature_Map* feat_map = NULL) = 0;

virtual void acquire(Image<uint16_t> & image,

Time* timestamp = NULL,

Feature_Map* feat_map = NULL) = 0;

};

6/16/2020 Robotic Exploration 126

Camera_Group Code Example

X_Hw_Camera hw_cam1(id1), hw_cam2(id2);

X_Camera cam1(hw_cam1), cam2(hw_cam2);

X_Camera_Group grp(cam1, cam2);

cam1.set_brightness(0.35);

cam2.set_brightness(0.35);

Vector<Image<uint8_t> > images(2);

grp.acquire(images);

6/16/2020 Robotic Exploration 127

Component Architecture (ControlShell)

• Flexibility

• Run-time re-configurability

• Structured environment

• Looser component

dependency

• More amenable to system

health management

• Graphical representation

• Auto-generated FSM code

• Monitoring state transitions

during execution

• Concrete interfaces

(no abstraction)

• Inter-operability

• Performance

(multiple data copies)

• Debugging (distributed)

• Difficult to manage graphical

representation

• Multiple ways to edit (graphics,

code, auto-code)

• Availability (cost)
6/16/2020

Advocacy Criticism

Robotic Exploration 128

COMMANDING THE ROBOT
SEQUENCES VS. TASK NETWORKS

6/16/2020 Robotic Exploration 129

Coordination

Health Management

Autonomy for Future Exploration

Mobility

Manipulation

Cognition

Sensing & Perception

Probabilistic Reasoning

Learning

V&V

6/16/2020 Robotic Exploration 130

131

Command Sequencing

• A basic operations paradigm

– Appeared in early days of space exploration

– Requires little processing power or memory

– Fundamentally open loop control

– Works well for predictable scenarios

– Responds to faults by going into safe-mode

• New paradigm

– Maximize onboard resource usage

– Onboard response to faults

Adapted from: Slides by D. Dvorak

6/16/2020 Robotic Exploration

D Dvorak, R Rasmussen, G Reeves, A Sacks, “Software architecture themes in JPL's Mission Data

System” - Aerospace Conference …, 2000 - ieeexplore.ieee.org

http://ieeexplore.ieee.org/abstract/document/879293/

Sequences vs. Task Networks

Command Sequencer

• Commands issued at absolute

and relative times

• Works well for predictable, fault-

free scenarios

• When a fault occurs, does not

know what activities are affected

• Requires Earth-in-the-loop for

recovery

Task Sequencer

• Task = command + success criterion

• Network captures task dependencies

• Task network holds recovery options

for task failures

• Unaffected tasks continue running

132

Old Paradigm New Paradigm

Adapted from: Slides by D. Dvorak

6/16/2020 Robotic Exploration

Command sequencer

Start of sequence

• Issue command C1

• Wait W1 seconds

• Issue command C2

• Issue command C3

• Wait W2 seconds

• Issue command C4

End of sequence

Task Sequencer

133

• Task success/failure monitored onboard

• Fault recovery more localized because

dependencies known onboard

• Unaffected tasks continue to run

• Success/failure unknown until telemetry

analyzed on Ground

• Fault protection often must safe because

dependencies not known onboard

T2

Legend:

Tasks: T1, T2

Success Criteria: S1, S2

Commands: C1, C2, C3, C4

Health states: H1, H2, H3

T1

H1

H2

H3

C1

C2

W1

execute

depends on execute
C3

C4

W2

S1
affects

monitors

monitors

S2
affects

Sequences vs. Task Networks

Adapted from: Slides by D. Dvorak

6/16/2020 Robotic Exploration

134

Example: Camera on a Scan Platform

• The camera rotates on the gimbaled platform to point at a

target

• Picture data from the camera is stored separately

• When the camera is OFF, a heater can keep it warm

Example System

Data

Camera

Platform

Heater

State

• Since control is about
change, we need a way
to talk about change

• This is accomplished
with the notion of

6/16/2020 Robotic Exploration

135

Camera Heater OFF

Camera ON

Turn

Take picture

Camera OFF

Camera Heater ON

Turn done

E

+ 2m

@ 1 PM

+ 2m

+ 8m

>0
Wait until done + 1m

Consider this in terms of

state time lines instead

Exposing the Sequence Structure

1:00 PM Camera Heater OFF

+ 2m Camera ON

+ 8m Turn platform to target

Turn done Take picture

+ 1m Camera OFF

+ 2m Camera Heater ON

Operator’s View:

Taking a Picture

Time

• Sequences are just that…

sequential!

• Commands are strung along
a single command time line
• Absolute and relative times, plus an

occasional event

• All relationships among commands must
be captured only in these consecutive
time relationships

• Order is frequently arbitrary, but it is fixed,
once selected

6/16/2020 Robotic Exploration

136

Let’s make everything explicit…

Checking the Sequence

1:00 PM Camera Heater OFF

+ 2m Camera ON

+ 8m Turn platform to target

Turn done Take picture

+ 1m Camera OFF

+ 2m Camera Heater ON

Operator’s View:

Holding

OFF

—

ON OFF

State Representation:

ON

Turning At Target

Exposure Idle —

OFF

ON

E

+ 2m

@ 1 PM

+ 2m

+ 8m

>0

Ready

+ 1mWait until done

• Manage boundary conditions
• Assume start states
• Impose end states

• Use models to predict times, state
gaps, and side effects

• Check rules, such as…
• Enough time for exposure
• Stationary during entire exposure

• Sequence itself remains unchanged

Taking a Picture

Time

Camera Power

Camera Heater

Platform Pointing

Camera Mode

6/16/2020 Robotic Exploration

137

Elaboration of the Example

Camera Power

Platform Pointing

Camera Mode

Turning

Wait until done

At target

Exposure

>0 >0

ON

Desired picture exists

Camera Temperature In allowable range

Camera Data Status

E
< deadline

• The resulting constraint network is still complete, but more flexible
than the sequence-based version

• Parent–child relationships among elements can be included in the
network, providing an even more information to aid manipulation

OFF if too warm; else ONCamera Heater

Control delegated to

temperature control

Say what to do, not how to do it

6/16/2020 Robotic Exploration

SYSTEM HEALTH MANAGEMENT

6/16/2020 Robotic Exploration 138

Model-Based System Health Management

• Provides an estimate of system behavior with respect to

health through the use of system models

• Models typically feed into Diagnostic Engines

– Estimated behavior from models is compared to sensor/command

data

• Some systems require explicit fault models (e.g.

Livingstone, HyDE)

• Others only require models of nominal system behavior for

fault diagnosis (e.g. MONSID)

139

Credit: Adapted from slides by Ksenia Kolcio

6/16/2020 Robotic Exploration

K Kolcio, L Fesq, R Mackey, “Model-based approach to rover health assessment for increased productivity,”

- Aerospace Conference, 2017.

http://ieeexplore.ieee.org/abstract/document/7943835/

MONSID System Health Management

• MONSID: Model-based Off-Nominal State Isolation

and Detection

– Off-nominal includes anomalous, degraded, and failed

conditions

• Provides fault detection and isolation

• Provides inputs to response and recovery actions

MONSID Engine
Healthy

Failed

Suspect
Model of SystemModel of

System

Command

Data

Sensor Data

6/16/2020 Robotic Exploration 140

Credit: Adapted from slides by Ksenia Kolcio

MONSID Models

• Interconnected components

representing hardware nominal

behavior

• Sensor and command data

propagated through model in

forward and reverse directions

• Nominal behavior constrained by

input-output relationships

6/16/2020 Robotic Exploration 141

Credit: Adapted from slides by Ksenia Kolcio

Nominal

How the MONSID Engine Works

• Sensor & command data

propagated through model

• Check consistency at

nodes

• Node consistency checks

pass

• Node consistency checks

fail

• Iteratively suspend

components

– Suspend a component

and check nodes

Fault Detection

Node violations!Fault Detected!

Node Violations!

Component not faulty

Unsuspend component

and suspend next one

Consistent nodes!

Component is Faulty!

Component Isolated!

Run constraints and

check nodes

Fault Isolation

Fault

Diagnosis

6/16/2020 Robotic Exploration 142

Credit: Adapted from slides by Ksenia Kolcio

Simple Flash Light Example

143

*J.F. Castet et al, AIAA SciTech 2015

6/16/2020 Robotic Exploration

A STATE-CENTRIC THEME
STATE-CENTRIC APPROACH

6/16/2020 Robotic Exploration 144

Architectural Themes

6/16/2020 Robotic Exploration 145

Background

• Space system are always tightly coupled

• Highly constrained resources demand it

• A key software role is to make this coupling manageable

Key Themes

• State and state uncertainty; estimates are not facts

• Use explicit models

• Express domain knowledge in models (no program logic)

• Use goal-directed operation

• Use real-time reaction to changes in state (closed-loop)

• Use real-time resource management

• Use integral system health management

• Instrument the software to gain visibility into its operation

146

More Architectural Elements (from MDS)

• Goals vs. Commands
– Goals are closed loop while commands are open-loop

• A goal
– Specifies an objective (intent) as a success criterion to be

checked during execution

– Specifies what to achieve, not how to achieve it

– During execution a goal knowingly succeeds or fails

– Permits flexibility in achievement

• State is central

• Goal is a constraint on state

• Goal Network vs. Command Sequence

• Estimates vs. measurements

• Controllers achieve constraint on state
http://mds.jpl.nasa.gov

6/16/2020 Robotic Exploration

http://mds.jpl.nasa.gov/

147

Control SystemPresentation Layer

•Operator interface and tools

•Human decisions & planning

•Longest time-scales

Planning Layer

•Deliberative planning

•Long time-scale control loops

•Applies alternate tactics

•Progressive problem escalation

Execution Layer

•Executes plan on intent timeline

•Monitors goal achievement

•Detects control failures

•May handle some contingencies

Control Layer

•Achieves goals

•Highly reactive behavior

•Short time-scale control loops

status

State Variables

Intent timeline

Knowledge timeline

Controllers

Goal Elaboration

& Re-elaboration

intent

Estimators

intent

Scheduling

goal

failures

Operator Displays

and Controls

goals

System Under Control

commandsmeasurements

Physical States
Physical States

Physical States

Goal

Executive

& Monitor

Layered Architecture for Control Systems

State variables have 2 timelines:
intent (populated by goals) and
knowledge (populated by estimates)

Goal achievement status is
monitored during execution
and goal failures trigger
fault recovery

Estimators generate state knowledge
based on available evidence

Controllers issue commands to
System Under Control in attempt
to achieve control goals

System Under Control has physical
states that Control System monitors
and controls via its State Variables

Operators are part of the Control
System since they make decisions,
closing the longest control loops

For each goal, its elaborator
produces supporting goals (if any)

Credit: D. Dvorak

6/16/2020 Robotic Exploration

State-Centric Architecture

6/16/2020 Robotic Exploration 148

Credit: D. Dvorak

State-Centric Architecture

• Designed to be resilient for

space environment

• Enables capturing unusual

coupling (e.g. thermal impact

on functional capabilities)

• Provides explicit

representation of intent

• Handling complex states (e.g.

surface representation)

• Scalability (explicit states could

explode in numbers)

• Separation of estimation and

control could be conflict with

certain hardware (e.g.

controlled motor)

• Always expressing goals as

constraints on state can be

challenging for some situations

6/16/2020

Advocacy Criticism

Robotic Exploration 149

Lessons Learned

• Think about design: implement and re-implement

• Flexibility comes at a cost: know where you need it

• Hardware/software: efforts need to engage both
hardware and software providers and supplies

• Outlook: autonomous systems is a rapidly growing field
with the possibility for several disruptive innovations

• Process: need an evolvable process that enables
fielding new innovations and evaluating success prior to
incorporation into the standard

6/16/2020 Robotic Exploration 150

6/16/2020

Summary

• Continued architectural themes

• Sequencing vs. Task Networks

• State-Centric approaches

Robotic Exploration 151

LECTURE 5
NAVIGATION EXAMPLE

6/16/2020 Robotic Exploration 152

6/16/2020

Presentation Overview

• Featured Video: Rover Navigation 101

• Rover navigation on flight rovers

• Navigation framework for testing different algorithms

Robotic Exploration 153

Rover Navigation 101
Rover Navigation: Fun with Spirit and Opportunity

ROVER NAVIGATION
FLIGHT ROVERS

6/16/2020 Robotic Exploration 155

Rover Autonomy on Mars

6/16/2020 Robotic Exploration 156

• Control:

– Bang-bang (on/off switching)

– Motor encoder (drive) or

potentiometer (steering)

• Hazard detection and

avoidance

– Uses laser striping and camera

– Determines presence of obstacles

– Steers autonomously to avoid

obstacles

– Continues to goal

– Uses averaged odometry and gyro

when stopped to update distance

traveled to estimate of progress

toward goal

Sojourner (1997)

6/16/2020 157Robotic Exploration

Recent Rovers Destination: Mars

Spirit (2004)

Opportunity (2004)

Curiosity (2011)

• Autonomous navigation: surface traverse

with hazard detection and avoidance

(obstacles, sinkage, …); multi-sol driving

• Visual odometry (VO): visual means to

estimate relative traverse distances. Used to

detect and estimate slip

• Visual target tracking*: to approach or view

designated target of interest from a distance

• Autonomous manipulation*: detecting and

avoids obstacles in the arm’s workspace

• Autonomous sampling*: reacting to drilling

or coring anomalies

• Opportunistic Science: detecting unique

visual features to acquire further measurement

* Demonstrated by used sparingly

Opportunity Traverse (through Sol 410)

Driving Modes:
➢ Blind Drive (planned by ground)
➢ Autonav (uses on-board perception and terrain analysis)
➢ Visodom (uses on-board perception to detect slip)

NASA/JPL/MSSS

6/16/2020 Robotic Exploration 158

Adapted from a Slide by M. Maimone

Hazcams
FOV: 120o FOV

Baseline:
17 cm (front)
10 cm (rear)

Rover Perception

Navcams
FOV: 45o FOV

Baseline:
42 cm (front)

~2 m off ground

159

ROVER NAVIGATION

6/16/2020 Robotic Exploration 160

Orbiter and Rover

Mapping and communication

Artist’s Concept. NASA/JPL-Caltech Artist’s Concept. NASA/JPL-Caltech

6/16/2020 Robotic Exploration 161

Data from the Mars Reconnaissance Orbiter

kjgkgkh

Suggested paths

Types of terrain

Slopes

Obstacles

NASA/JPL-Caltech

Helps “see” several kilometers ahead, allowing for

these different modes of driving.

Credit: Mark Maimone6/16/2020 Robotic Exploration 162

Autonomous Navigation

Perceive Decide Act

Stereovision

Point Cloud

Grip Map Stats
Traversability

Analysis

Mechanical
Sensing

Kinematic
Model

Action
Selector

Local Cost Global Cost

Visual
Odometry

Exteroceptive Proprioceptive

Inertial
Sensing

Keep out Zones
(orbital info)

Previously seen
local maps

6/16/2020 Robotic Exploration 163

ROVER NAVIGATION

▪ PERCEPTION

▪ TRAVERSABILITY ANALYSIS

▪ ACTION SELECTION

6/16/2020 Robotic Exploration 164

Perception Envelope

All geometries are properly scaled

Eff/Actual stereo

range

6/16/2020 Robotic Exploration 165

Curiosity Rover
Spirit/Opportunituy Rover

40m

30m

20m

The dark areas closest to the rover are the safest places to drive

NASA/JPL-Caltech

Typical Data from Navcams

6/16/2020 Robotic Exploration 166

Modular Pipeline

167

I. Nesnas, “Claraty: A collaborative software for advancing robotic

technologies,” in NASA Science and Technology, 2007 Conference on, 2007.Credit: adapted from slide by Michael Paton

Point Cloud

Credit: Larry Matthies,

Todd Litwin, Mark Maimone

Stereo Disparity Pipeline

169

Pre-Filtering
Stereo

Correspondence
Post-Filtering

Credit: adapted from slide by Michael Paton

Stereo Disparity Pipeline

170

Pre-Filtering
Stereo

Correspondence
Post-Filtering

Credit: adapted from slide by Michael Paton

Stereo Disparity Pipeline

171

Pre-Filtering
Stereo

Correspondence
Post-Filtering

Credit: adapted from slide by Michael Paton

Stereo Disparity Pipeline

172

Pre-Filtering
Stereo

Correspondence
Post-Filtering

Credit: adapted from slide by Michael Paton

Visual Odometry Pipeline

173

Extraction Matching
Outlier

Rejection
Optimization

Credit: adapted from slide by Michael Paton

Visual Odometry Pipeline

174

Extraction Matching
Outlier

Rejection
Optimization

Credit: adapted from slide by Michael Paton

Visual Odometry Pipeline

175

Extraction Matching
Outlier

Rejection
Optimization

Credit: adapted from slide by Michael Paton

Visual Odometry Pipeline

176

Extraction Matching
Outlier

Rejection
Optimization

Credit: adapted from slide by Michael Paton

Slip Hazards Difficult to PredictCuriosity

4

Slip Measured by Visual Odometry

Credit: Chris Cunningham

6/16/2020 Robotic Exploration 177

Correlating Thermal Inertia and Slip

Robotic Exploration 178

Credit: Chris Cunningham

6/16/2020

Terrain Classification Helps

Credit: Chris Cunningham

6/16/2020 Robotic Exploration 179

LECTURE 6
SURFACE NAVIGATION EXAMPLE

6/16/2020 Robotic Exploration 180

6/16/2020

Presentation Overview

• Recap rover navigation example

– Perception

– Traversability analyzer

– Mobility

– Software architecture

– Deployments

• Future directions

– Cassini Grand Finale(video)

– Open Ocean Worlds

Robotic Exploration 182

Autonomous Navigation

Perceive Decide Act

Stereovision

Point Cloud

Grip Map Stats
Traversability

Analysis

Mechanical
Sensing

Kinematic
Model

Action
Selector

Local Cost Global Cost

Visual
Odometry

Exteroceptive Proprioceptive

Inertial
Sensing

Keep out Zones
(orbital info)

Previously seen
local maps

6/16/2020 Robotic Exploration 183

ROVER NAVIGATION

▪ PERCEPTION

▪ TRAVERSABILITY ANALYSIS

▪ ACTION SELECTION

6/16/2020 Robotic Exploration 184

Modular Pipeline

185

I. Nesnas, “Claraty: A collaborative software for advancing robotic technologies,” in

NASA Science and Technology, 2007 Conference on, 2007.

Point Cloud

Credit: Larry Matthies,

Todd Litwin, Mark Maimone

Pose Estimation Using Visual Odometry

Unlike terrestrial robots, Curiosity drives as far as possible between VO images

NASA/JPL-CaltecS

NASA/JPL-CaltechNASA/JPL-Caltech

NASA/JPL-Caltech

6/16/2020 Robotic Exploration 187

Credit: Mark Maimone

ROVER NAVIGATION

▪ PERCEPTION

▪ TRAVERSABILITY ANALYSIS

▪ ACTION SELECTION

6/16/2020 Robotic Exploration 188

Point Cloud Statistics

Traversability:

F (

terrain,

mobility,

safety,

)

6/16/2020 Robotic Exploration 189

6/16/2020 190

Terrain Analysis and Hazard Detection

Credit: CLARAty - JPL/Carnegie Mellon – C Urmson, et al.

Credit: JPL/GESTALT navigation – Mark Maimone

Robotic Exploration

Safety: Constraining the Search with Keep-in Zones

Yellow means drive carefully, just like on Earth.

Rover

Engineers

have told

the rover

to stay

within the

white area.

Rover

NASA/JPL-Caltech

Credit: Mark Maimone

6/16/2020 Robotic Exploration 191

Alternative Algorithm:

ENav Approx. Clearance Eval. (ACE)

1926/16/2020 Robotic Exploration

Credit: Guillaume Matheron, Olivier Toupet, Tyler Del Sesto, Hiro Ono, Michael McHenry

ENav Results

193

Color legend: wheel drop, low clearance, occlusion, high local tilt, high global tilt, KIZ/KOZ

6/16/2020 Robotic Exploration

Credit: Guillaume Matheron, Olivier Toupet, Tyler Del Sesto, Hiro Ono, Michael McHenry

ROVER NAVIGATION

▪ PERCEPTION

▪ TRAVERSABILITY ANALYSIS

▪ MOBILITY

▪ ACTION SELECTION

6/16/2020 Robotic Exploration 194

6/16/2020

Option 1: Rover Mobility – Flat Terrain Approx.

(a)

Skid Steerable

(no steering wheels)

Front
x

yz

(b)

Partially steerable

Front

x

yz

(c)

Partially steerable

Front

x

yz

(d)

Fully-steerable

x

Front

yz

(e)

Passive Suspension (complies to

terrain)

(f)

Active Suspension (actuated

links)

195Robotic Exploration

Rover Mobility – Parallel Parking Maneuvers

6/16/2020 Robotic Exploration 196

Rover Mobility – Parallel Parking Maneuvers

6/16/2020 Robotic Exploration 197

Credit: adapted from slide by H. Nayar

6/16/2020 Robotic Exploration 198

Rover Mobility – Generalized to any wheeled vehicle

Credit: adapted from slide by H. Nayar

6/16/2020 Robotic Exploration 199

• Use kinematics to relate the wheel rates to the attitude and

suspension angles & rates:

Option 2: Rocker Bogie Kinematics

200

Credit: Olivier Toupet, Jeffrey Biesiadecki

6/16/2020 Robotic Exploration

6/16/2020
Robotic Exploration 201

Capabilities of Wheel Locomotor

• Type of maneuvers:

– Straight line motions (fwd / bkwd)

– Crab maneuvers

– Arc maneuvers

– Arc crab maneuvers

– Rotate-in-place maneuvers (arc turn r=0)

• Driving Operation

– Non-blocking drive commands

– Multi-threaded access to the Wheel_Locomotor class – e.g. one task can

use Wheel_Locomotor for driving while the other for position queries

– Querying capabilities during all modes of operation. Examples include

position updates and state queries

– Built-in rudimentary pose estimation that assumes vehicle follows

commanded motion

ROVER NAVIGATION

▪ PERCEPTION

▪ TRAVERSABILITY ANALYSIS

▪ ACTION SELECTION

6/16/2020 Robotic Exploration 202

Option 1: Action Selection (M2020 Enav)

203

Local Planner
Global Planner

• Gives cost from the end of tree to

goal

• Routes computed on 200m x 200m

map

• 1 m resolution

• Considers slope, roughness, keep-

out zones

ACE
(Approx. Clearance Est.)

• Runs every 25cm

• Checks clearance, tilt,

suspension and attitude limits,

wheel drop

• Selects best path for the next 6m

Credit: Olivier Toupet, Hiro Ono, Michael McHenry, Tyler Del Sesto

6/16/2020 Robotic Exploration

Option 2: More Diverse Potential Action Space

204

• Irregular sampling of

fixed-curvature arcs

• Reduced maximum

heading change

• Variable curvature paths

and fixed-curvature arcs

• All three performance

metrics exhibit

improvement over

uniform, constant arc

length

Credit: Thomas Howard, Mihail Pivtoraiko

6/16/2020 Robotic Exploration

ROVER NAVIGATION

SOFTWARE ARCHITECTURE (RESEARCH)

6/16/2020 Robotic Exploration 205

Robotic Exploration

Navigation Architecture

…

6/16/2020 206

C. Urmson, R. Simmons, I. Nesnas, "A Generic Framework for Robotic Navigation," Proceedings of the IEEE

Aerospace Conference, Big Sky Montana, March 2003.

Robotic Exploration

Navigation Architecture

…

6/16/2020 207

C. Urmson, R. Simmons, I. Nesnas, "A Generic Framework for Robotic Navigation," Proceedings of the IEEE

Aerospace Conference, Big Sky Montana, March 2003.

Robotic Exploration

Navigation Architecture

…

6/16/2020 208

C. Urmson, R. Simmons, I. Nesnas, "A Generic Framework for Robotic Navigation," Proceedings of the IEEE

Aerospace Conference, Big Sky Montana, March 2003.

Athena Rover Testbed

209

Surface Navigation Research

6/16/2020 Robotic Exploration 210

Recent Results

6/16/2020 Robotic Exploration 211

Credit: Venkat Rajagopalan, Jacek Sawoniewicz, Kyohei Otsu, Travis Brown, Issa Nesnas

WHAT LIES AHEAD

6/16/2020 Robotic Exploration 212

Illustration of Mars 2020 on Mars with a proposed Mars helicopter

Artist’s concept of a Europa Plume

Artist’s concept Exploring Europa’s Interior

CONCLUDING THOUGHTS

SUMMARY

6/16/2020 Robotic Exploration 217

6/16/2020

Lectures Summary

• Motivated architecting robotics software with a
focus on space applications

• Shared constraints and challenges from that
domain

• Reviewed architectural styles across 3 decades

• Shared experiences about architectural themes

• Investigated in detail one example: surface
navigation

• Peered into future challenges

Robotic Exploration 218

6/16/2020

Summary

• Developing scalable and reusable robotic software is hard
because of the hardware/software heterogeneity

• Architectural styles, object-orientedness, and design
patterns provide flexibility and help manage complexity

• Abstractions and polymorphism help handle heterogeneity

• Concurrency is critical to robotic applications

• Often times, robot software architecture is a hybrid of
multiple styles

• Reusability comes at a cost

• Software interoperability has been demonstrated on
complex platforms

• Architectural themes recurred from multiple experiences
across multiple projects

Robotic Exploration 219

Concluding Thoughts

• Advancing robotic autonomy software would continue to

play a critical role in space exploration

• Environments will continue to become more challenging

• Some of the most interesting sites are currently

inaccessible to state-of-the-art mobility platforms

• However, with new ideas and approaches to advance the

art, we would overcome such challenges

• Prototyping and field-testing would be a critical

Robotic Exploration 2206/16/2020

BACKGROUND SLIDES

SUMMARY

6/16/2020 Robotic Exploration 221

6/16/2020
Robotic Exploration 222

Generic Technologies & Algorithms

• Technologies that are generic by design should not be

constrained by the software architecture & implementation

• Non-generic technologies should be accommodated on the

appropriate platforms

– Example (Generic): if you are working in navigation, you would not

care about H/W architecture difference among different rovers

– Example (Specific): if you are doing wheel/terrain interaction

research, you might require specific hardware which one of the

vehicles would support

• Assumptions are made explicit

6/16/2020

Dynamics Simulation (DARTS)

Objectives

• Advanced high-fidelity, physics-based

modelling and simulation for autonomous

robotic platforms and environments

• Used for the development, test and

operation of autonomous robotic

platforms

Robotic Exploration 223

